

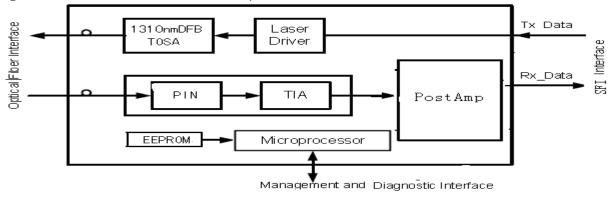
Features

- ♦ Hot pluggable
- ♦ 10Gb/s serial optical interface
- ♦ 1310nm DFB Laser and PIN receiver
- ♦ Up to 10km on 9/125um SMF
- ♦ SFP+ MSA package with duplex LC connector
- ♦ 2-wire interface for management and diagnostic monitor
- ♦ SFI High Speed Electrical Interface
- ♦ Very low EMI and excellent ESD protection
- ♦ Power consumption less than 1.0W
- ♦ Operating case temperature: -40~+85C

Applications

- ♦ 10G Base- LR/LW
- ♦ 10GE Storage, 8G Fiber Channel
- ♦ Other optical links

Standard


- ♦ Compliant with SFF-8431 and SFF-8432
- ♦ Compliant with SFF-8472 Rev 10.2
- ♦ Compliant with IEEE 802.3ae 10GBASE-LR and 10GBASE-LW
- ♦ RoHS Compliant

Description

HSFP10-2323 is a very compact 10Gb/s optical transceiver module for serial optical communication applications, supporting data-rate of 10.3125Gbps (10GBASE-LR) or 9.953Gbps (10GBASE-LW), and transmission distance up to $2\sim10$ km on SMF.

The transceiver consists of two sections: The high performance a 1310nm DFB Laser, Transmitter and high sensitivity PIN integrated with a TIA. Receiver.

A block diagram of the HSFP10-2323 SFP+ optical transceiver is shown below

SFP+ LR Transceiver

The module is hot pluggable into the 20-pin connector. The high-speed electrical interface is based on low voltage logic, with nominal 100 Ohms differential impedance and AC coupled in the module. The optical output can be disabled by LVTTL logic high-level input of TX_Disable. Loss of signal (RX_LOS) output is provided to indicate the loss of an input optical signal of receiver. The receiver RATE_SELECT pin is not used by the transceiver

A 2-wire interface (SCL, SDA) is used for serial ID, digital diagnostics and other control /monitor functions

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Storage Temperature	T _{ST}	-40	+85	°C
Supply Voltage	V _{CC3}	0.0	+3.6	V
Relative Humidity	RH	5	95	%

Recommend Operation Environment

Parameter	Symbol	Min	Тур	Max	Unit
Date Rate			10.3125	11.3	Gb/s
Supply Voltage	Vcc	+3.14	3.3	+3.47	V
Supply Current	Icc			300	mA
Power Dissipation	PD		800	1000	mW
Operating Temperature	Тор	-40	25	+85	°C

Optical Characteristics (Condition: $T_a = T_{OP}$)

Parameter	Symbol	Min	Type	Max	Unit	Note		
Transmitter								
Date Rate			10.3125	11.3	Gb/s			
Optical Wavelength	λ	1260		1355	nm			
Average output power	Ро	-6.5		0.5	dBm	1		
Optical Extinction Ratio	ER	3.5			dB	1		
Optical Modulation Amplitude	OMA	-5.2			dBm			
Disabled Power	Poff			-30	dBm			
Side Mode Suppression Ratio	SMSR	30			dB			
Dispersion penalty				3.2	dB			
Tx Jitter	Txj	Per 802.3ae requirements						
Receiver								
Date Rate			10.3125	11.3	Gb/s			
Optical Wavelength	λ	1260		1355	nm			
Receiver Sensitivity	R			-14.4	dBm	2		

Page 2 of 11 Rev1.0 Issued Date: 2017-05-10

Receiver Sensitivity in OMA	R		-12.6		
Stressed Receiver Sensitivity in OMA	R		-10.3	dBm	2
Maximum Input Power	PMAX	0.5		dBm	
LOS De-Assert	LOSD		-15	dBm	
LOS Assert	LOSA	-25		dBm	
LOS Hysteresis		0.5	4	dB	
Receiver Reflectance			-12	dB	

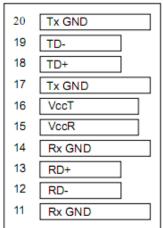
Notes:

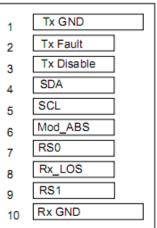
- Note 1. Measured at 10.3125b/s with PRBS $2^{31} 1$ NRZ test pattern.
- Note 2. Under the ER worst case, measured at 10.3125 Gb/s with PRBS 2^{31} 1 NRZ test pattern for BER < $1x10^{-12}$

Electrical Characteristics (Condition: $T_a = T_{OP}$)

Parameter		Symbol	Min	Тур	Max	Unit	Note
Transmitter							
Differential input voltage	swing	VI	150		1600	mVpp	1
Common mode voltage to	lerance		15	-	-	mV	
Transmit Disable Input	Н	V _{IH}	2.0		Vcc+0.3	V	
Transmit Disable Input	L	$V_{\rm IL}$	0		0.8	V	
Transmit Enable Output	Н	Vон	2.4		Vcc+0.3	V	
Transmit Enable Output	L	V _{OL}	0		0.4	V	2
Data Dependent Input Jiti	ter	DDJ			0.1	UI	
Data Input Total Jitter		TJ			0.28	UI	
Input Differential Impeda	nce	Zin	80	100	120	Ω	
Receiver							
Differential output voltage	swing		500		700	mVpp	3
LOC Output	Н	Vон	2.4		Vcc+0.3	V	2
LOS Output	L	V _{OL}	0		0.4	V	
Rx Output Rise and Fall Ti	Tr/Tf	30			ps	20% to 80%	
Total Jitter	TJ			0.7	UI		
Deterministic Jitter	DJ			0.42	UI		
Output Differential Imped	ance	Zon	80	100	120	Ω	

- Note 1) TD+/- are internally AC coupled with 100Ω differential termination inside the module.
- Note 2) Tx Fault and Rx LOS are open collector outputs, which should be pulled up with 4.7k to $10k\Omega$ resistors on the host board. Pull up voltage between 2.0V and Vcc+0.3V.
- Note 3) RD+/- outputs are internally AC coupled, and should be terminated with 100Ω (differential) at the user SERDES.


Rev1.0 Issued Date: 2017-05-10


Page 3 of 11

Pin Assignment

Diagram of Host Board Connector Block Pin Numbers and Name

Top of Board

Bottom of Board

Pin Function Definitions

PIN#	Name	Function	Notes
1	VeeT	Module transmitter ground	Note 1
2	Tx Fault	Module transmitter fault	Note 2
3	Tx Disable	Transmitter Disable; Turns off transmitter laser output	Note 3
4	SDA	2 wire serial interface data input/output (SDA)	
5	SCL	2 wire serial interface clock input (SCL)	
6	MOD-ABS	Module Absent, connect to VeeR or VeeT in the module	Note 2
7	RS0	Receiver Rate Select	
8	LOS	Receiver Loss of Signal Indication	Note4
9	RS1	Transmitter Rate Select (not used)	
10	VeeR	Module receiver ground	Note 1
11	VeeR	Module receiver ground	Note 1
12	RD-	Receiver inverted data out put	
13	RD+	Receiver non-inverted data out put	
14	VeeR	Module receiver ground	Note 1
15	VccR	Module receiver 3.3V supply	
16	VccT Module transmitter 3.3V supply		
17	VeeT	Module transmitter ground	
18	TD+	Transmitter inverted data out put	
19	TD-	Transmitter non-inverted data out put	
20	VeeT	Module transmitter ground	Note1

Note 1) The module ground pins shall be isolated from the module case.

Note 2) This pin is an open collector/drain output pin and shall be pulled up with 4.7K-10Kohms to Host_Vcc on the host board.

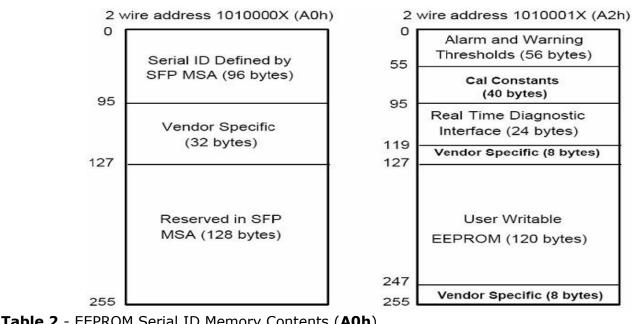
Note 3) This pin shall be pulled up with 4.7K-10Kohms to VccT in the module.

Note 4) This pin is an open collector/drain output pin and shall be pulled up with 4.7K-10Kohms to

Shenzhen Hi-Optel Technology Co., Ltd.

Hi-Optel Building, BLDG 2, Gaofa Technology Park Longjing, Nanshan District, Shenzhen, China 518055
Tel: +86 755 26753088 Fax: +86 755 26753099
E-mail: Info@hioptel.com Http://www.hioptel.com

Page 4 of 11 Rev1.0 Issued Date: 2017-05-10



Host Vcc on the host board.

SFP Module EEPROM Information and Management

The SFP+ modules implement the 2-wire serial communication protocol as defined in the SFP -8472. The serial ID information of the SFP+ modules and Digital Diagnostic Monitor parameters can be accessed through the I2C interface at address A0h and A2h. The memory is mapped in Table 1. Detailed ID information (A0h) is listed in Table 2. And the DDM specification at address A2h. For more details of the memory map and byte definitions, please refer to the SFF-8472, "Digital Diagnostic Monitoring Interface for Optical Transceivers".

Table 1. Digital Diagnostic Memory Map (Specific Data Field Descriptions)

Data Address	Length (Byte)	Name of Length	Description and Contents
Base ID Fie	elds		
0	1	Identifier	Type of Serial transceiver (03h=SFP)
1	1	Reserved	Extended identifier of type serial transceiver (04h)
2	1	Connector	Code of optical connector type (07=LC)
3-10	8	Transceiver	
11	1	Encoding	64B/66B (06h)
12	1	BR,Nominal	Nominal baud rate, unit of 100Mbps (67h)
13-14	2	Reserved	(0000h)
15	1	Length(9um)	Link length supported for 9/125um fiber, units of 100m
16	1	Length(50um)	Link length supported for 50/125um fiber, units of 10m
17	1	Length(62.5um)	Link length supported for 62.5/125um fiber, units of 10m
18	1	Length(Copper)	Link length supported for copper, units of meters
19	1	Reserved	

Shenzhen Hi-Optel Technology Co., Ltd.

Hi-Optel Building, BLDG 2, Gaofa Technology Park Longjing, Nanshan District, Shenzhen, China 518055 Tel: +86 755 26753088 Fax: +86 755 26753099 E-mail: Info@hioptel.com Http://www.hioptel.com

Page 5 of 11 Rev1.0 Issued Date: 2017-05-10

20-35	16	Vendor Name	SFP vendor name: Hioptel			
36	1	Reserved				
37-39	3	Vendor OUI	SFP transceiver vendor OUI ID			
40-55	16	Vendor PN	Part Number: "HSFP10xxxx" (ASCII)			
56-59	4	Vendor rev	Revision level for part number			
60-62	3	Reserved				
63	1	CCID	Least significant byte of sum of data in address 0-62			
Extended I	D Fields					
64-65	2	Option	Indicates which optical SFP signals are implemented (001Ah = LOS, TX_FAULT, TX_DISABLE all supported)			
66	1	BR, max	Upper bit rate margin, units of %			
67	1	BR, min	Lower bit rate margin, units of %			
68-83	16	Vendor SN	Serial number (ASCII)			
84-91	8	Date code	Hioptel Manufacturing date code			
92	1	Diagnostic type				
93	1	Enhanced option				
94	1	SFF-8472				
95	1	CCEX	Check code for the extended ID Fields (addresses 64 to 94)			
Vendor Spe	Vendor Specific ID Fields					
96-127	32	Readable	Hi-Optel specific date, read only			
128-255	128	Reserved	Reserved for SFF-8079			

Table 2 - FEPROM Serial ID Memory Contents (A2h)

Address	Bytes	Name	Description
00-01	2	Temp High Alarm	MSB at low address
02-03	2	Temp Low Alarm	MSB at low address
04-05	2	Temp High Warning	MSB at low address
06-07	2	Temp Low Warning	MSB at low address
08-09	2	Voltage High Alarm	MSB at low address
10-11	2	Voltage Low Alarm	MSB at low address
12-13	2	Voltage High Warning	MSB at low address
14-15	2	Voltage Low Warning	MSB at low address
16-17	2	Bias High Alarm	MSB at low address
18-19	2	Bias Low Alarm	MSB at low address
20-21	2	Bias High Warning	MSB at low address
22-23	2	Bias Low Warning	MSB at low address
24-25	2 TX Power High Alarm		MSB at low address
26-27	2	TX Power Low Alarm	MSB at low address
28-29	2	TX Power High Warning	MSB at low address
30-31	2	TX Power Low Warning	MSB at low address
32-33	2	RX Power High Alarm	MSB at low address

Rev1.0 Issued Date: 2017-05-10

Page 6 of 11

34-35	2	RX Power Low Alarm	MSB at low address
36-37	2	RX Power High Warning	MSB at low address
38-39	2	RX Power Low Warning	MSB at low address
40-55	16	Reserved	Reserved for future monitored quantities

Address	#Bytes	Name	Description
56-59	4	Rx_PWR(4)	Single precision floating point calibration data - Rx optical power. Bit 7 of byte 56 is MSB. Bit 0 of byte 59 is LSB.
60-63	4	Rx_PWR(3)	Single precision floating point calibration data - Rx optical power. Bit 7 of byte 60 is MSB. Bit 0 of byte 63 is LSB.
64-67	4	Rx_PWR(2)	Single precision floating point calibration data - Rx optical power. Bit 7 of byte 64 is MSB, bit 0 of byte 67 is LSB.
68-71	4	Rx_PWR(1)	Single precision floating point calibration data - Rx optical power. Bit 7 of byte 68 is MSB, bit 0 of byte 71 is LSB.
72-75	4	Rx_PWR(0)	Single precision floating point calibration data - Rx optical power. Bit 7 of byte 72 is MSB, bit 0 of byte 75 is LSB.
76-77	2	Tx_I(Slope)	Fixed decimal (unsigned) calibration data, laser bias current. Bit 7 of byte 76 is MSB, bit 0 of byte 77 is LSB.
78-79	2	Tx_I(Offset)	Fixed decimal (signed two's complement) calibration data, laser bias current. Bit 7 of byte 78 is MSB, bit 0 of byte 79 is LSB
80-81	2	Tx_PWR(Slope)	Fixed decimal (unsigned) calibration data, transmittercoupled output power. Bit 7 of byte 80 is MSB, bit 0 of byte81 is LSB.
82-83	2	Tx_PWR(Offset)	Fixed decimal (signed two's complement) calibration data, transmitter coupled output power. Bit 7 of byte 82 is MSB, bit 0 of byte 83 is LSB.
84-85	2	T(Slope)	Fixed decimal (unsigned) calibration data, internal module temperature. Bit 7 of byte 84 is MSB, bit 0 of byte 85 is LSB.
86-87	2	T(Offset)	Fixed decimal (signed two's complement) calibration data, internal module temperature. Bit 7 of byte 86 is MSB, bit 0 of byte 87 is LSB.
88-89	2	V(Slope)	Fixed decimal (unsigned) calibration data, internal module supply voltage. Bit 7 of byte 88 is MSB, bit 0 of byte 89 is LSB.
90-91	2	V(Offset)	Fixed decimal (signed two's complement) calibration data, internal module supply voltage. Bit 7 of byte 90 is MSB. Bit 0 of byte 91 is LSB.
92-95	4	Reserved	Reserved

Page 7 of 11 Rev1.0 Issued Date: 2017-05-10

Byte	Bit	Name	Description
Conv	erted	analog values. Calibrated 16	ó bit data
96	All	Temperature MSB	Internally measured module temperature.
97	All	Temperature LSB	
98	All	Vcc MSB	Internally measured supply voltage in transceiver.
99	All	Vcc LSB	
100	All	TX Bias MSB	Internally measured TX Bias Current.
101	All	TX Bias LSB	
102	All	TX Power MSB	Measured TX output power.
103	All	TX Power LSB	
104	All	RX Power MSB	Measured RX input power.
105	All	RX Power LSB	
106	All	Reserved MSB	Reserved for 1st future definition of digitized analog input
107	All	Reserved LSB	Reserved for 1st future definition of digitized analog input
108	All	Reserved MSB	Reserved for 2nd future definition of digitized analog input
109	All	Reserved LSB	Reserved for 2nd future definition of digitized analog input
Optio	nal S	tatus/Control Bits	
110	7	TX Disable State	Digital state of the TX Disable Input Pin. Not supported.
110	6	Soft TX Disable	Read/write bit that allows software disable of laser.
			Not supported.
110	5	Reserved	
110	4	RX Rate Select State	Digital state of the SFP RX Rate Select Input Pin.
			Not supported.
110	3	Soft RX Rate Select	Read/write bit that allows software RX rate select.
			Not supported.
110	2	TX Fault	Digital state of the TX Fault Output Pin.
110	1	LOS	Digital state of the LOS Output Pin.
110	0	Data Ready	Indicates transceiver has achieved power up and data is ready
111	7-0	Reserved	Reserved.

Byte	Bit	Name	Description			
Reser	ved O	ptional Alarm and Warning F	lag Bits			
112	7	Temp High Alarm	Set when internal temperature exceeds high alarm level.			
112	6	Temp Low Alarm	Set when internal temperature is below low alarm level.			
112	5	Vcc High Alarm	Set when internal supply voltage exceeds high alarm level.			
112	4	Vcc Low Alarm	Set when internal supply voltage is below low alarm level.			
112	3	TX Bias High Alarm	Set when TX Bias current exceeds high alarm level.			
112	2	TX Bias Low Alarm	Set when TX Bias current is below low alarm level.			
112	1	TX Power High Alarm	Set when TX output power exceeds high alarm level.			
112	0	TX Power Low Alarm	Set when TX output power is below low alarm level.			
113	7	RX Power High Alarm	Set when Received Power exceeds high alarm level.			
113	6	RX Power Low Alarm	Set when Received Power is below low alarm level.			
113	5	Reserved Alarm				

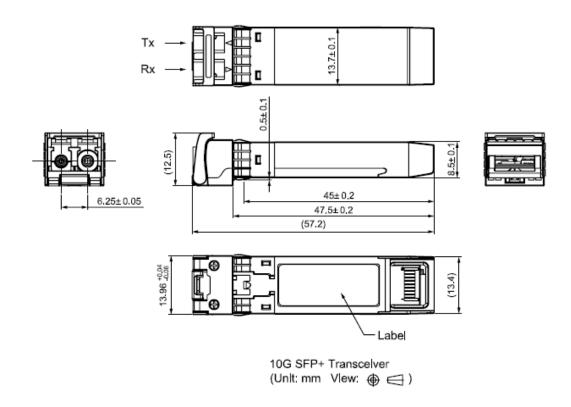
Shenzhen Hi-Optel Technology Co., Ltd.
Hi-Optel Building, BLDG 2, Gaofa Technology Park Longjing, Nanshan District, Shenzhen, China 518055
Tel: +86 755 26753088 Fax: +86 755 26753099 E-mail: Info@hioptel.com Http://www.hioptel.com

Page 8 of 11 Rev1.0 Issued Date: 2017-05-10

113	4	Reserved Alarm				
113	3	Reserved Alarm				
113	2	Reserved Alarm				
113	1	Reserved Alarm				
113	0	Reserved Alarm				
114	All	Reserved				
115	All	Reserved				
116	7	Temp High Warning	Set when internal temperature exceeds high warning level.			
116	6	Temp Low Warning	Set when internal temperature is below low warning level.			
116	5	Vcc High Warning	Set when internal supply voltage exceeds high warning level.			
116	4	Vcc Low Warning	Set when internal supply voltage is below low warning level.			
116	3	TX Bias High Warning	Set when TX Bias current exceeds high warning level.			
116	2	TX Bias Low Warning	Set when TX Bias current is below low warning level.			
116	1	TX Power High Warning	Set when TX output power exceeds high warning level.			
116	0	TX Power Low Warning	Set when TX output power is below low warning level.			
117	7	RX Power High Warning	Set when Received Power exceeds high warning level.			
117	6	RX Power Low Warning	Set when Received Power is below low warning level.			
117	5	Reserved Warning				
117	4	Reserved Warning				
117	3	Reserved Warning				
117	2	Reserved Warning				
117	1	Reserved Warning				
117	0	Reserved Warning				
118	All	Reserved				
119	All	Reserved				

Digital Diagnostic Monitor Characteristics

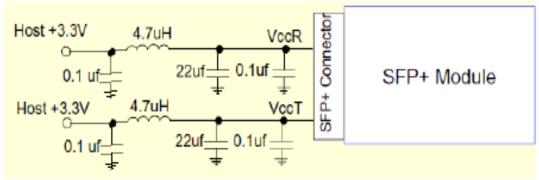
Parameter	Symbol	Min.	Max	Unit
Temperature monitor absolute error	DMI_Temp	-3	3	°C
Laser power monitor absolute error	DMI_TX	-3	3	dB
RX power monitor absolute error	DMI_RX	-3	3	dB
Supply voltage monitor absolute error	DMI_VCC	-0.08	0.08	V
Bias current monitor	DMI_Ibias	-10%	10%	mA


Page 10 of 11

Issued Date: 2017-05-10

Rev1.0

Mechanical Dimensions


Comply to SFF-8432 rev. 5.1 Improved Pluggable formfactor specification.

Recommended Circuit


Tel: +86 755 26753088

E-mail: Info@hioptel.com

Recommended Host Board Power Supply Circuit

Recommended High-speed Interface Circuit

Shenzhen Hi-Optel Technology Co., Ltd.
Hi-Optel Building, BLDG 2, Gaofa Technology Park Longjing, Nanshan District, Shenzhen, China 518055 Tel: +86 755 26753088 Fax: +86 755 26753099 E-mail: Info@hioptel.com Http://www.hioptel.com

Page 11 of 11 Rev1.0 Issued Date: 2017-05-10