

Features

- ♦ Four channel full-duplex transceiver modules
- ♦ Hot pluggable QSFP+ form factor
- ♦ Four channel 850nm VCSEL Array
- ♦ Four channel PIN detector Array
- ♦ Data rate up to 10.5Gbps per channel
- → Maximum link length of 100m on OM3 MMF and 150m on OM4 MMF
- ♦ Maximum Power dissipation:<1W
- ♦ Single 1x12 MPO receptacle
- ♦ Single +3.3V power supply operating
- ♦ Built-in digital diagnostic functions
- ♦ Operating Case Temperature: 0°C~+85°C
- ♦ RoHS-6 compliant (lead-free)

Applications

- ♦ 40G BASE-SR4/40G Ethernet
- ♦ Datacom switch and router connections
- ♦ Data centers and Metro networks
- ♦ Other Optical Links

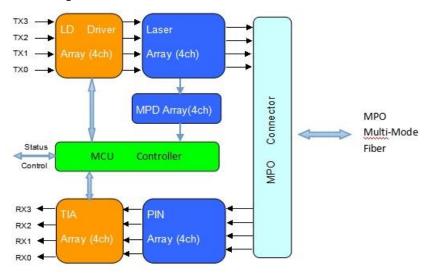
Standard

- ♦ Compliant with 40G Ethernet IEEE802.3ba
- ♦ Compliant with 40GBASE-SR4 Standard
- ♦ Compliant with SFF-8436 QSFP+ MSA

Description

The QSFP+SR4 module is a 40Gb/s optical transceiver module for serial optical communication applications, The design is compliant to 40GBASE-SR4 of the IEEE P802.3ba standard, and transmission distance up to 100m on OM3 MMF and 150m on OM4 MMF. Digital diagnostics functions are available via an I2C interface as specified by the SFF-8436 QSFP+ MSA.

The module is hot pluggable into the 38-pin connector. The high-speed electrical interface is based on low voltage logic, with nominal 100 Ohms differential impedance and AC coupled in the module. The module have 5 low speed pins for control and status. Modseil is module select, Resetl is module reset, LPMode is Low Power Mode, Modprsl is module present, Intl is Interrupt.



om <u>Http://www.hioptel.com</u> Issued Date: 2019-04-30

Page 1 of 10 Rev2.3

A block diagram of QSFP+SR4 optical transceiver is shown below

Specification

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Storage Temperature	TST	-20	+85	${\mathbb C}$
Operating Case Temperature	Тор	0	+85	$^{\circ}$
Supply Voltage	VCC3	0.0	+3.6	V
Relative Humidity	RH	5	95	%

Recommend Operation Environment

Secomment operation Environment					
Parameter	Symbol	Min	Тур	Max	Unit
Date Rate(per channel)			10.3125		Gb/s
Supply Voltage	VCC	3.13	3.3	3.47	V
Supply Current	ICC			300	mA
Power Dissipation	PD			1.0	W
Operating Case Temperature	TOP	0		+85	$^{\circ}\!$

Issued Date: 2019-04-30

Page 2 of 10

Rev2.3

Page 3 of 10

Rev2.3

Optical Characteristics (Condition: Ta=TOP)

Parameter	Symbol	Min	Type	Max	Unit	Note
Transmitter						
Date Rate(per channel)			10.3125		Gb/s	
Optical Wavelength	λ0	840	850	860	nm	
RMS Spectrum Width	Δλ	-	-	0.65	nm	
Average output power, each lane	Po	-7.5	-	2.5	dBm	1
Optical Modulation Amplitude, each Lane	OMA	-5.6	-	3.0	dBm	
Difference in Launch Power between any two Lanes (OMA)		-	-	4	dB	
Optical Extinction Ratio	ER	3			dB	1
Dispersion penalty, each lane				3.5	dB	
Optical Return Loss Tolerance		-	-	12	dB	
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm	
Relative Intensity Noise	Rin			-128	dB/HZ	
Eye Mask definition(X1,X2,X3,Y1,Y2,Y3)		0.23, 0.34, 0.43, 0.27, 0.35, 0.4				
Receiver						
Date Rate(per channel)			10.3125		Gb/s	
Receiver Sensitivity, each Lane		-	-	-9.5	dBm	2
Maximum Receiver Power, each lane		2.4	-	-	dBm	2
Receiver Power (OMA), each Lane				3.0	dB	
Stressed Receiver Sensitivity in OMA each Lane				-5.4	dBm	
LOS De-Assert	LOSD			-12	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis		0.5			dB	
Receiver Reflectance				-12	dB	

Notes:

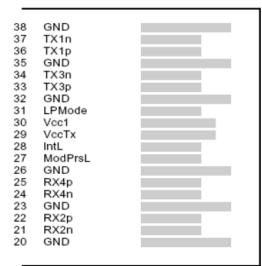
Note 1) Measured at 10.3125Gb/s with PRBS $2^{31} - 1$ NRZ test pattern. Note 2) Measured at 10.3125Gb/s with PRBS $2^{31} - 1$ NRZ test pattern for BER $< 1 \times 10^{-12}$

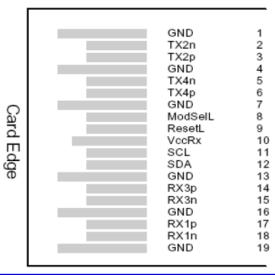
Shenzhen Hi-Optel Technology Co., Ltd.

Hi-Optel Building,BLOG2,Gaofa Technology Park,Longjing,Nanshan Shenzhen,China. 518055 Tel: +86 755 2675 3088 Fax: +86 755 2675309

E-mail: info@hioptel.com Http://www.hioptel.com Issued Date: 2019-04-30

Electrical Characteristics (Condition: Ta=TOP)


Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply Current	Icc			300	mA	
Control I/O Voltage-High	VIH	2.0		Vcc	V	
Control I/O Voltage-Low	VIL	0		0.8	V	
RESETL Duration			10		Us	
RESETL De-assert time				100	ms	
Power On Time				100	ms	
Transmitter						
Differential input voltage swing	VI	150		1200	mVpp	1
Common mode voltage tolerance		15			mV	
Input Differential Impedance	Zin	80	100	120	Ω	
Receiver			•			
Differential output voltage swing		370		900	mVpp	2
Rx Output Rise and Fall Time(20% to 80%)	Tr/Tf	28			ps	
Output Differential Impedance	Zon	80	100	120	Ω	


Notes:

- 1) TD+/- are internally AC coupled with 100Ω differential termination inside the module.
- 2) RD+/- outputs are internally AC coupled, and should be terminated with 100Ω (differential) at the user SERDES.

Pin Assignment

Diagram of Host Board Connector Block Pin Numbers and Name

Shenzhen Hi-Optel Technology Co., Ltd.

Hi-Optel Building,BLOG2,Gaofa Technology Park,Longjing,Nanshan Shenzhen,China. 518055 Tel: +86 755 2675 3088 Fax: +86 755 2675309 E-mail: info@hioptel.com Http://www.hioptel.com Page 4 of 10 Rev2.3 Issued Date: 2019-04-30

Pin Description

Pin	Logic	Symbol	Name/Description	Ref.
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Output	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Output	
7		GND	Ground	1
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	1
14	CML-O	Rx3p	Receiver Inverted Data Output	
15	CML-O	Rx3n	Receiver Non-Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Inverted Data Output	
18	CML-O	Rx1n	Receiver Non-Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power Supply Transmitter	2
30		Vcc1	+3.3V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Tx3p	Transmitter Inverted Data Output	
34	CML-I	Tx3n	Transmitter Non-Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Inverted Data Output	
37	CML-I	Tx1n	Transmitter Non-Inverted Data Output	
38		GND	Ground	1

Shenzhen Hi-Optel Technology Co., Ltd.Hi-Optel Building,BLOG2,Gaofa Technology Park,Longjing,Nanshan Shenzhen,China. 518055 Tel: +86 755 2675 3088 Fax: +86 755 2675309 E-mail: info@hioptel.com Http://www.hioptel.com

Page 5 of 10 Rev2.3 Issued Date: 2019-04-30

40G QSFP+ Transceiver HQSFP10-381 850nm VCSEL, MPO Connector, 0~85°C, 100m

Notes:

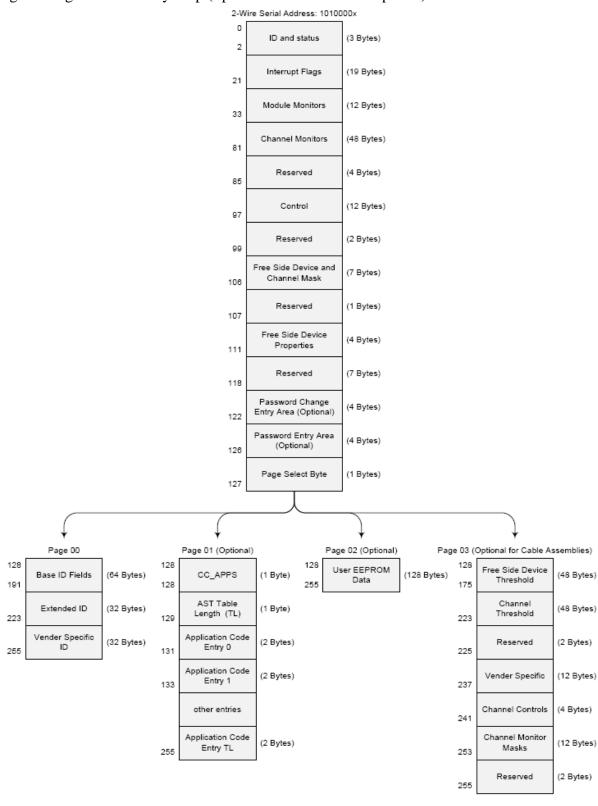
1)GND is the symbol for single and supply(power) commom for QSFP modules, All are common within the QSFP module and all module voltages are referenced to this potential otherwise noted. Connect these directly to the host board signal common ground plane.

2)VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. VccRX, Vcc1 and VccTx may be internally connected within the QSFP transceiver module in any combination. The connector pins are each rated for maximum current of 500mA

Digital Diagnostic Monitoring Interface

Digital diagnostics monitoring function is available on QSFP+ SR4. Real time monitoring include Module temperature, Module supply voltage, and monitoring for each transmit and receive channel. the Memory Map for QSFP+ Module used for serial ID, digital monitoring and certain control functions. The interface is mandatory for all QSFP+ devices. The interface has been designed largely after the XFP MSA as defined in INF-8077i Rev.4.0. The memory map has been changed in order to accommodate 4 optical channels and limit the required memory space. The single address approach is used as found in XFP. Paging is used in order to enable time critical interactions between host and Module.

The structure of the memory is shown in Figure 30. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, e.g. Interrupt Flags and Monitors. Less time critical entries, e.g. serial ID information and threshold settings, are available with the Page Select function. The structure also provides address expansion by adding additional upper pages as needed. For example, in table1 upper pages 01 and 02 are optional. Upper page 01 allows implementation of Application Select Table, and upper page 02 provides user read/write space. The lower page and upper page 00 are always implemented. Page 03 is required if byte 2, bit 2 in the lower page is low. See Table 39 for details regarding declaration of optional upper pages 01 and 02. The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a "one-time-read" for all data related to an interrupt situation. After an Interrupt, IntL, has been asserted, the host can read out the flag field to determine the effected channel and type of flag.


Issued Date: 2019-04-30

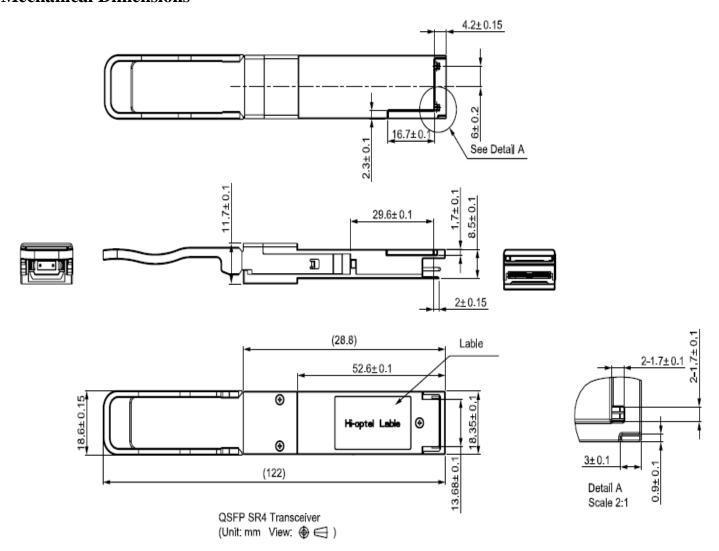
Page 6 of 10

Rev2.3

Table 1. Digital Diagnostic Memory Map (Specific Data Field Descriptions)

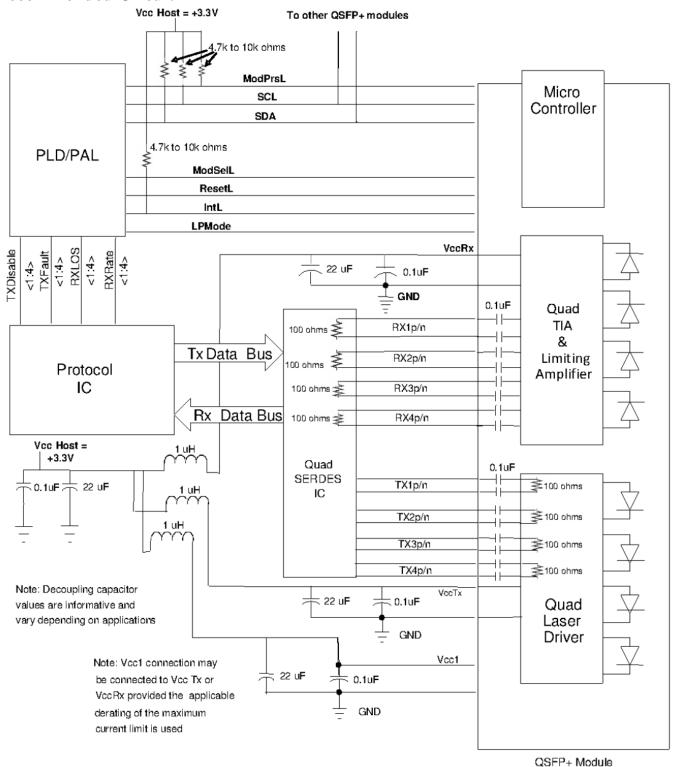
Hi-Optel Building,BLOG2,Gaofa Technology Park,Longjing,Nanshan Shenzhen,China. 518055 Tel: +86 755 2675 3088 Fax: +86 755 2675309 E-mail: info@hioptel.com Http://www.hioptel.com Page 7 of 10 Rev2.3 Issued Date: 2019-04-30

Table 2 - EEPROM Serial ID Memory Contents (**A0h**)


Address	Description	Type	Passive Copper,	Optical	
			Active Copper,	Module	
			Active Optical		
0	Identifier (1	Read-Only	R	R	
	Byte)				
1-2	Status (2 Bytes)	Read-Only	See Table 18		
3-21	Interrupt Flags (19 Bytes)	Read-Only	See Tables 19-21		
22-33	Module Monitors (12 Bytes)	Read-Only	See Table 22		
34-81	Channel Monitors (48 Bytes)	Read-Only	See Table 23		
82-85	Reserved (4 Bytes)	Read-Only	Reserved		
86-97	Control (12 Bytes)	Read/Write	See Table 24		
98-99	Reserved (2 Bytes)	Read/Write	Reserved		
100-106	Module and Channel Masks (7 Bytes)	Read/Write	See Table 25		
107-118	Reserved (12 Bytes)	Read/Write	Reserved		
119-122	Password Change Entry Area (optional) (4 Bytes)	Read/Write	0 0		
123-126	Password Entry Area (optional) 4 Bytes	Read/Write	0 0		
127	Page Select Byte	Read/Write	R	R	

Shenzhen Hi-Optel Technology Co., Ltd.Hi-Optel Building,BLOG2,Gaofa Technology Park,Longjing,Nanshan Shenzhen,China. 518055 Tel: +86 755 2675 3088 Fax: +86 755 2675309 E-mail: info@hioptel.com Http://www.hioptel.com

Page 8 of 10 Rev2.3 Issued Date: 2019-04-30



Mechanical Dimensions

Recommended Circuit

Recommended High-speed Interface Circuit

E-mail: info@hioptel.com Http://www.hioptel.com Issued Date: 2019-04-30